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Now let us turn to the conventional view of the initial conditions. We will insert two switches, one in
the top conductor and one in the bottom conductor (Fig.3). When we close the two switches, the

distant resistor cannot define the current which rushes along the wires because the wave front has not
yet reached the resistor (Figs.4,5)
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If the dielectric is air (&, = 1, - = 1) then
c=(8.854x 1071241 x 1077)"V/2 = 2.998 x 108 m s—1

The wave travels at the speed of light

This is identical to the result that we got for the velocity
of the wave on a transmission line (Eqn. 1.9)

It should be! We derived Eqn. 1.9 from the inductance
and capacitance per unit length of a transmission line
(e.g. the coaxial cable) which themselves are derived from
the Gauss Law of Electric Fields and the Ampére Law

In both cases, we started with the Maxwell equations -

we have gone by very different routes, but have ended at
the same conclusion

Remember also that the wave on the transmission line
was actually an electromagnetic wave in the space
around the conductors, and the conductors are simply
providing free charge to guide the wave
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Electromagnetic Waves in D

ieiectrics

G&P365, GER71, FLE112

* In the previous lecture, we saw the four Maxwell
Equations in differential form

* These each say something about the origin and nature of

electric and magnetic fields, and they are
V.D=p (3.12) V.B=0 (3.14)

0B _ ¢, 9D
VXE=—-—(323) VXH=]+— (3.35)

* A major success of the Maxwell Equations was tc

explain the transmission of electromagnetic waves
through free space, and we will now prove this

We will consider that we are in a dielectric (i.e. insulating)
medium, such as air, glass, plastics, etc.

There is no free charge in these materials, so

p=20 J=0

Therefore, the Maxwell Equations become
V.D=90 (4.1a) V.B=0 (4.1b)

_ _ 0B _aD
VXE = —'5'; (4.1C) VXH——a? (4.1d)
Let us take the curl of Eqn. 4.1c
0B

VX(VXE)=-V X (E) (4.2)

From the Maths Data Book p16, we have the identity
Vx((Vxu=Vl.u-Vu
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e Hence, Egn. 4.2 becomes

9
V(V.E) — V2E = ——(V xB) (4.3)

e We canuse D = g,¢,E to rewrite Egn. 4.1a as
VE=0
e So substituting into Egn. 4.3 gives

V’E = 9 (V X B) 4.4
ot 4.4)
 We also know that in dielectric media B = uyu,-H, so
0
VZE = pop, - (VX H) (4.5)
* We can now use Egn. 4.1d to substitute for V X H to give
Sy 04D
VE = ﬂ{)“r—aﬁ
) 0%E
VE = poprg08; 312 (4.6)

e This is just the wave equation again, which is a 3-
dimensional version of Egn. 1.4 of the form

Vi) = ——— 4.7
v c? Ot? (4.7)
e Wesaw in Lecture 1 that c is the velocity of the wave

* Therefore, Eqn. 4.6 tells us that an electric field can
propagate as a wave through a dielectric with a velocity

_ 1
VHolrEpEr

C

(4.8)
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* Ifthe dielectricisair (¢, = 1, i, = 1) then
c=(8854x10"12.41x 1077)"1/2 = 2998 x 108 m s~

The wave travels at the speed of light

This is identical to the result that we got for the velocity
of the wave on a transmission line (Eqn. 1.9)

It should be! We derived Eqn. 1.9 from the inductance
and capacitance per unit length of a transmission line
(e.g. the coaxial cable) which themselves are derived from
the Gauss Law of Electric Fields and the Ampére Law

In both cases, we started with the Maxwell equations -

we have gone by very different routes, but have ended at
the same conclusion

Remember also that the wave on the transmission line
was actually an electromagnetic wave in the space
around the conductors, and the conductors are simply
providing free charge to guide the wave
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. the conductors are simply providing free charge to guide the wave.” From the south,

defying Gauss’s Law http://www.ivorcatt.co.uk/2812.htm , or from the west, travelling at
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e Apart from Eqgn. 4.8 giving us the experimentally-
verified velocity of light in air, it also shows that

the velocity should slow down in a dielectric

e At school, you probably learned that light slows down in
water or glass, and the refractive index n quantifies this

Cmedium — Cair/n

(4.9)

e Glass, plastic, water and similar dielectrics are all non-

magnetic, so u, = 1, and Egn. 4.8 becomes
_ 1 _ Cair

C . o =
medium W \/g—r

e Comparing Egns. 4.9 and 4.10, we can see that the

(4.10)

refractive index is actually related to the permittivity by

n =./&

(4.11)

e A similar wave equation to Eqgn. 4.6 can be derived
for magnetic fields by taking the curl of Egn. 4.1d

> d0“H
B VoH = poprgo; 9tz

(4.12)

e |n order to think further about the nature of the

wave, we are going to consider a plane wave

e This is a wave that propagates in a specific direction and

which is uniform in the plane perpendicular to the
propagation direction

e Examples are light from the sun, a radio wave a long

distance from the transmitter or a sound wave a long

distance from its source
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* Avalid plane wave solution to Egn. 4.6 is
E = (oni + Eqyj + Eo,K)exp{j(wt — £2)} (4.13)

e i,jand Kk are the unit vectors in each of the x, y and z
directions respectively

e [ is the propagation constant (21t /A4)
* This wave is therefore travelling in the positive z-direction

* You have probably been told at A-level that the
electric field vector is perpendicular to the
direction of propagation, but we can prove this
from Eqn. 4.1a
e AsD = gy¢,.E, this becomes

VE=0

2P5: Electromagnetic Fields & Waves: Lecture 4 - Transpafency 6




* Hence, writing V. E in Cartesian coordinates

J0E, OE, OF,
7y + 3y + Py 0 (4.14)

 However, for a plane wave which is uniform in the xy
plane perpendicular to propagation

oE, OE,
= =0
0x dy
* So Egn. 4.14 becomes
i =0 (4.15)
0z
e Substituting in the plane wave (Egn. 4.13) gives
“jBEozeXp{f(wt _ BZ)} =0 (4.16)

e This has only two possible solutions

e Either 5 = 0, but this implies an infinite A, which is not a
wave, or

E,,=0 (4.17)

= There is no component of electric field in the direction of
propagation of a plane electromagnetic wave

» We arrive at a similar conclusion for H from Egn. 4.1b

e Let us now assume that the plane electromagnetic
wave is polarised so that the electric field vector is
pointing in the x-direction, so Eqn. 4.13 has
become

E = E,, dexp{j(wt — Bz)} (4.18)
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* What is the equation for the magnetic field?
e We can use Egn. 4.1c

i j k

W E = 9/0x d/dy 0/0z :_%.l?.
Eoxexp{j(wt — )} 0 0 t
. 0 _ P |
i3 Foxexplj(t = B} = ke [Eg explj (@t — p2)]
L
ot
0B
/BEoxexplj(wt — Bz)} = —
* Hence,
g b |
= J=Eoxexplj(wt — fz)}
H = Hyyjexpij(wt ~ B2)} (4.19)
e where
— /8 EOx
oy = W to fy (4. )

 Therefore, H is perpendicular to both E and the direction
of propagation of the wave

* Also, considering the amplitude of the wave using Eqn. 4.8
B/w = Q2r/A)/@2rf) =1/fA=1/c = \Jolr&oEr
€oér

Holy

(4.21)

HOy = Fox
7/7 Q2 i \
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e Eqgn. 4.21 tells us that the amplitude of the electric and
magnetic fields in an electromagnetic wave are related
* The ratio of the two amplitudes is only dependent on the
properties of the medium through which the wave is
travelling, and we call this the impedance of the medium
gt [Rokr 422
H ™ 0 bz
e Note that this is the characteristic impedance of an ideal
. transmission line (Egn. 2.4) with no geometry factor
e For air, the characteristic impedance is 377 QQ
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The Power in 2 Wave & the

G&P383, GER72

Poynting Vector

e [f afield occupies a volume of space, then there
must be potential energy stored

e This is true for gravity, as if we put a mass in a
gravitational field then a force will act on the mass and
any motion will result in an energy change

* As charges experience a force in an electric field and
moving charges experience a force in a magnetic field,
then these fields must also store energy

* An electromagnetic wave is therefore transmitting energy,
and so must have a power density (power per unit area)

e Poynting considered this problem, and using the Maxwell
equations, he defined the Poynting Vector N as

N=EXH (4.23)

e The direction of N is the direction of propagation of the
wave, which is consistent with Eqgns. 4.18 and 4.19

e The magnitude of N is the instantaneous power density
(in J m™2) in the wave ~— this will be time-varying

e As E and H are perpendicular, then we can evaluate the
magnitude of N for the case of our plane wave

* Inthis case it is easier to express E and H as real numbers,
Egns. 4.18 and 4.19 become

E = Ey,icos(wt — fz) (4.24a)
H = Hyyj cos(wt — fz) (4.24b)
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e Hence
IN| = E,H,y cos?(wt — fz)

e If we plot |N| at a particular point in space, say z = 0, then
we find that the instantaneous power is time varying

E H

0x" "0y kx

EoHy/2t

NI [J m”]

oT 1T 2T 3T
Time [s]

e Note the similarity with a.c. power, but here there is

NoO

phase difference between the electric and magnetic fields

e The average power per unit area |N| is only half the peak

power, so

B iy - [EIIHI _ExH
2 2

* This is the equation that we most frequently use to

(4.25)

actually work out the average power per unit area (i.e. the

intensity) of an electromagnetic wave

» Alternatively, if we define rms values of E and H, then this

becomes

|ﬁ| = Ermerms

2P5: Electromagnetic Fields & Waves: Lecture 4 — Transparency
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Antennas
G&P443, GER102, GER109

e One of the most important applications of free
space electromagnetic waves in to broadcast
information (e.g. radio, terrestrial TV, satellite TV,
mobile telephones, wifi, bluetooth, etc.)

* In order to do this we need to be able to both generate a
free-space electromagnetic wave from an electrical signal
and convert an electromagnetic wave back into an
electrical signal again

* This is achieved using antennas, of which there are a huge
diversity
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* Which antenna is selected to send or receive a
particular signal depends on the wavelength,
distance and directionality required

* We will not consider lots of different types of antennas,
but instead the metrics by which they may be evaluated
* One of the simplest antenna designs for

broadcasting is the half-dipole (or grand plane)
antenna

-~ This consists of a conductor of height A/4 sticking out of a
ground plane

e Radio antennas are of this type

* An a.c. signal is applied to the antenna, which results in an
oscillating dipole and current (remembering that the
method of images means that there is an effective
opposite charge being produced under the ground plane)
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* The oscillating dipole produces an electric field in the
direction of the antenna, whilst the current produces a
magnetic field that is perpendicular to the electric field

e These are the conditions to set up an electromagnetic
wave that will propagate in a direction perpendicular to
both waves

* Itis clear that the wave will be preferentially transmitted
in the plane of the ground, which for a radio transmitter is

what is required
10
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e Such anisotropy in the radiated signal is always true of

antennas, and we could use the Maxwell Equations and
Poynting Vector to calculate the power in the transmitted
signal as a function of spherical polar coordinates

 However, a good engineering figure of merit is the gain of
the antenna which is defined as

Maximum power density

Antenna Gain= _ :
[sotropic power density (4.27)
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* In other words, let us say that a transmitting antenna is

outputting a total power P

e If this power was being radiated isotropically, then at

some distance r from the antenna

INIiSO — 47_[1,,2

(4.28)

* However, if the antenna has a gain G, then the power
density in the maximum direction of propagation will be

_ _ GP

—— Power density
— — - |sciropic equivalent

GINI
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e We also define what is called the Radiation Resistance

(4.29)

* This is the resistance R, that would have to be put in the
place of the transmitting antenna that would dissipate as

much power as the antenna radiates
R, = P/I'Ems

e [.ms isthe rms current driving the antenna

(4.30)
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* Receiving antennas attempt to harvest energy
from an electromagnetic wave and convert this
back into an electrical signal again

e Common examples are the
parabolic dish antenna used
to receive satellite signals or
a log-periodic antenna for
terrestrial TV reception

e Simple dipole antennas are
often used for radio reception

* Once again, the Maxwell equations
can be used to determine how much power in an
electromagnetic wave is absorbed by the antenna

* A good engineering figure of merit is the effective area
Agrr which is the area of the electromagnetic wave that

would give the power P,;. absorbed by the antenna

eff — IN| (4.21)

In other words, it is the area than an ideal antenna would
have to occupy to absorb the same power

t
Home-made L }
antenna for X
receiving data on a
Scottish island

(courtesy Prof Woodhouse)
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