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Abstract

An easy to repeat macroscopic experiment, leading to the invention of a method of
fast short electromagnetic pulse generation, performed by Oliver Heaviside in 1887,
leads also to a better understanding of the apparent discrepancy between the
Coulomb (‘static’) and Maxwell (‘dynamic’) interaction between the electromagnetic
fields and charged matter particles. It also leads to a better understanding of the
internal field structure of elementary particles, as well as the electromagnetic
properties of quantum vacuum fluctuations, and the cosmological problem of the
vacuum energy density.

The Controversy

Every electronics technician knows that electromagnetic waves propagate at a
finite velocity, as determined in the XIX century by Helmholtz, Hertz, Faraday, and
Maxwell. Yet many electric phenomena are still being explained in terms of a
Coulomb’s ‘static’ field. To illustrate the problem, let us consider two charged
particles, each having a charge, ¢; and g2, and each charge generating a field, £, and
E5. Conventionally their interaction is described in terms of a net force resulting from
the action of fields on the charges. Let us concentrate on the action of the field £; on
the charge ¢-. The force vector F5 is expressed as:

132 = (1251 (1)

The strength of the field E is proportional to the charge q; as the field source, and is
inversely proportional to the distance squared (for a spherical field geometry) from ¢;:
Ey o — ()
In order to obtain an exact equality, we must account for a certain proportionality
constant, which turns out to be equal to 1/4mey. Here the factor 47 stems from the
spherical geometry of the field, and ¢ is the dielectric constant or permittivity of free
space (vacuum). Thus in the direction 7 the field strength is:
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Equation (4) bears striking similarity to Newfon’s gravitational force:
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A remarkable property of equation (4), and also (5), is the nonexistence of any
propagator (time-dependent) terms. This has led some scientists to erroneously think

that Coulomb’s interaction (and Newton’s gravitation) must be instantaneous!.

In more modern XX century terms, we have on one hand the Einstein’s photon
as a carrier of the dynamic electromagnetic field, whilst on the other hand we have the
Thompson’s electron as the matter—based electric charge carrier acting as the source of
the surrounding ‘electrostatic’ field, and any variation of this field is being interpreted
as a consequence of electron kinematics. This mind boggling duality of one and the
same phenomenon has been often the cause of hot debates, even before the discovery
of the electron, and it persists to these days (the first decades of the XXI century).

By the development of quantum mechanics (QM), and later of quantum
electrodynamics (QED), the attempt to ‘solve’ this discrepancy (and several others!)
forced the introduction of ‘virtual photons’ (Dirac, Feynman) mediating the
interactions between particles. In this way the ‘static’ field was explained in terms of
QED, thus bridging the gap between the two views.

Nevertheless, many people regard such an explanation as unsatisfactory, and
most of them quote certain experiments performed by Zesla, especially those leading
to the construction of the tower at the Wardenclyffe plant on Long Island in 1904, as
well as his own writings on the subject of wireless energy transmission.

To answer this question, let us return to the two charges we were dealing with
above. We have the means to remove one of those charges in a very short time. If this
charge is in form of an elementary particle, it can be removed by firing at it a
complementary charged particle, so that the two annihilate into a pair of photons. If
the charge is accumulated on the surface of a metal sphere, containing inside a battery
and a relay switch, the switch can be configured so that it disconnects the battery and
shorts the internal circuit. In both cases the charge is removed in time much shorter
than required for the field propagation between the charges. Assume the two charges
being one meter apart; we know that the propagation speed of electromagnetic
phenomena is the same as the speed of light, about 3x10® m/s. This means that any
field disturbance at one end will be felt by the other some 3.3 ns later.

The question we ask ourselves is: when the field collapses, does the other
charge sense it at the same instant, or 3.3 ns later?

It is our intention to show that there has never been any static/dynamic
‘duality’ in the first place. Instead, all ‘static’ phenomena can be described more
consistently by dynamic phenomena only. Nature always behaves consistently, of
course; the problem is with our interpretation of natural phenomena, and with our
limited ability to recognize serious flaws in our ‘obvious’ explanations.

In addition to offering a proper explanation, we are going to open a wider
perspective on the problem of charge at the elementary particle level.

ITo be completely fair, there is the Lorentz’s force: F:D =@ (E + U x B) , but here the velocity vector
7 is attributed to the movement of g, through the field B3, not to the propagation of the field E.
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The History

The first indication that Coulomb’s and Maxwell’s equations do not tell the
whole story became apparent already in the second half of the XIX century with the
development of the telegraph.

Since Volta’s discovery, electricity has been thought of as a ‘fluid’, ‘flowing’
as a ‘current’ (Weber) from the ‘source’ ‘through’ a conductor to the load and back
‘through’ another conductor. This water pipe analogy became quickly the prevailing
model of electric energy transfer. To these days, children at primary school and
university students alike are still educated by being encouraged to imagine and keep in
mind this simple model. I call it sarcastically the “Plumber’s Electricity” (please,
don’t get me wrong, I have nothing against plumbers, in fact I respect them deeply,
especially when there is a leak in my bathroom; no, the sarcasm is all aimed at us
physicists and electronics engineers!).

However, in the 1870s, when the telegraph developers were trying to analyse
the behaviour of very long transmission lines under various pulse propagation modes,
that simple picture faced serious challenges.

One of the first to realize the inadequacy of modeling electricity by a water
pipe analogy was Oliver Heaviside. His long debates with various opponents, Sprague
in particular, are well known. Instead of concentrating on the charge current inside
the wires, Heaviside takes the field between the wires as the primary cause of
electrical phenomena, referring to it as the ‘energy current’:

“Now in Maxwell’s theory there is the potential energy of the displacement

produced in the dielectric part by the electric force, and there is the kinetic
or magnetic energy of the magnetic induction due to the magnetic force in
all parts of the field, including the conducting parts. They are supposed to
be set by the current in the wire. We reverse this; the current in the wire is
set up by the energy transmitted through the medium around it ...”

The importance of the phrase “We reverse this;” can not be overstated! The
requirement for this reversal stems from the fact that the waves in free space and
around the wires travel considerably faster than the waves inside conductors, and
many orders of magnitude faster than the average speed of electrons. It is therefore
reasonable to assume that the faster phenomena must be the cause, and the slower
ones the effect.

Most people take for granted that energy (light, heat) from the Sun comes to
the Earth in form of radiation through free space (seeing is believing!), but at the same
time they dismiss as nonsense the idea of the electric energy coming into our homes
‘between’ the wires. In their opinion any field between the wires must be only a
consequence of what is going on inside each wire. Not just ordinary people, but also
most top scientists and engineers adhere to this view. Once a fundamentally wrong
idea becomes familiar and ‘obvious’, it is very hard to get rid of it in favour of a more
correct, but less obvious one.

In order to help us to become accustomed to this ‘new’ (130 years old!) idea,
we are going to describe a simple experiment, easily performed by anybody who has
access to an ordinary oscilloscope (preferably a digital memory instrument, to ease the
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view of fast but rarely repeated events), and who knows how to connect to it a simple
network consisting of:

* a9V battery;
* a single pole, double throw switch;

* three pieces of type RG-58 coaxial cable (having a 50 2 characteristic impedance),
each a couple of meters long;

+ and two resistors, one of 50 €2, equal to the characteristic impedance of the cable,
serving as a termination resistor at the end of the cable, and the other of a much
higher value, say 50 k{2, to allow charging of one cable section by the battery via a
switch.

Preparations for the Experiment

In Heaviside’s days there were no ready made pulse generators, nor
oscilloscopes, and neither shops with shelves full of sophisticated electronics
components. To generate well defined, short, and fast rising pulses for testing the
telegraph lines one had to build his own equipment by himself. All that was at hand
were chemical batteries, switches, wires, and a variety of insulating material. And,
given the high propagation velocity of electrical signals, kilometers of wire were
needed to produce pulses long enough to be recorded by such a primitive device as the
magnetograph. Today we have oscilloscopes capable of capturing nanosecond pulses,
so we are going to need only a few meters of cable.

Before we connect the components to form the required network, we need to
examine the properties of coaxial cables (such cables were invented and patented by
Heaviside in 1880), in particular their propagation time delay as a function of their
characteristic impedance and their length. An important performance aspect of such
cables is that all of the field between the inner conductor (‘core’) and the external
conductor (‘shield’) is kept inside all along the length. Fig.1 shows a typical example.

Fig.1: Coaxial cable (conductors sharing a common geometry axis): A — inner
conductor, B — polyethylene insulator, C — outer conductor, D — outer jacket.

The characteristic impedance of a coaxial cable is governed by the geometry of
its cross section and the permittivity of the dielectric material insulating the inner
conductor from the outer shield. Following the definition of the geometry and the
material constants of a coaxial cable as in Fig.2, it is possible to determine the cable’s
specific inductance and capacitance. We label the radius of the inner conductor as a,
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and the radius to the inner surface of the outer conductor as b. We also label the unit
length along the cable as .

Fig.2: Geometry of field integration and material constants of a coaxial cable.
The magnetic permeability of the wire material is:
[ = oL (6)
where 11 1s the permeability of free space (exact by definition):
o = 471077 Vs/Am (7)

and p, is the relative permeability of the wire material. For copper, Cu, the
permeability is picy = 0.999994 ~ 1. Following the 1983 agreement on the units of
length and time in SI, the speed of light in vacuum is exactly:

1
c=——— =299792458m/s (8)

\/ Ho€o

Consequently the permittivity (the dielectric constant) of free space is:

gy = ~ 8.8542x107'% As/Vm 9)

o

In most textbooks the value of permittivity “just happens to be such”, and is
accepted without any further consideration; in Appendix 3 we show that this value
has much deeper roots. The dielectric constant of the insulating material is:

€ = €0&r (10)

where ¢, is the relative dielectric constant of the material. The insulator in RG-58
coaxial cables is typically made of polyethylene, for which the relative dielectric
constant 1s g, =~ 2.25.

As in (9), the propagation speed of the electromagnetic wavefront in a cable is:

1 1

1 c
N R N

From a known v we find the propagation time delay per unit length:

()

2
Ngem 2x10%m/s (11)



The Heaviside’s Experiment E.Margan

l 1[m] g
= —~————— =75x10 =5 12
T= 310° [m)s] s/m ns/m (12)
If we now make a cross-section of the cable along the unit length [, and we
take the area defined by the radius difference of both conductors, (b —a) - I, and
integrate it for the angle 6 from 0 to 27 radians, perpendicular to the cable axis, as
indicated in Fig.2, we can express the cable capacitance per unit length:
C 2
& ATe (13)
l In(b/a)
As in (11), the propagation speed of the electromagnetic wave within a circuit
is determined by a capacitance C' and inductance L, and can be expressed as:

1
- 14
el (14)

so we can use (13) and (14) to determine the inductance per unit length:

L L b
— = —In[ — 15
l 2m (a) 15
Now that the inductance and the capacitance of a cable segment are known, we
can draw the lumped circuit model of that segment, Fig.3. The complete cable is
modeled as a distributed series of such segments. The core has a small serial
resistance R and a serial inductance L, whilst its capacitance to the shield is

represented by C'. The insulation between the core and the shield is represented by a
small conductance G

v =

Fig.3: Above: Electrical lumped circuit model of a small segment of a coaxial cable. The
core has a small serial resistance R and a serial inductance L. Its capacitance to the shield
is represented by C' and the conductance of the insulating material between the core and
the shield is represented by G. Below: a long cable can be modeled by an infinite series
of such small segments.

The input impedance the circuit in Fig.3 as seen by a signal source can be
found as a ratio of the input voltage v; to the input current 7;:

_— 16
1 G+ jwC (16)



The Heaviside’s Experiment E.Margan

From this we can express the characteristic impedance of the cable (see Appendix 2
for a complete derivation):

. | R+ jwL
Zy =1 Z) =] —— 17
0 61—13%)(6) G + jwC (17

The core resistance R is very small, because the specific resistance of copper
is p = 1.68x10~% QOm (at a temperature of 20°C). Ohm’s law states that the resistance
is proportional to the specific resistance of the material, p, and to the wire length, [,
and inversely proportional to the wire cross-section area, A, thus R = pl/A. In a
typical coaxial cable the core diameter is d = 2a = 1 mm, so the cross-section is
A = 7d?/4 ~ 0.785x10~° m?. With [ = 1 m the core resistance is about 0.021 ).

Similarly, the specific resistance of polyethylene is very high, usually above
106 Om for low voltages (in our case 9V); because conductance is the inverse of
resistance, G will be very low.

Because R < jwL and G < jwC for frequencies f = w/27 in the MHz
range and above, we can assume a lossless circuit, with R—0 and G'—0. This
simplifies the characteristic impedance to:

L

Zy = c (18)
Because jw cancels, Z; is frequency independent and purely real, so we may
think of it as a resistor Ry, however this is true only for transient phenomena, as long
as the wave propagates along the cable; once the wave propagation ends, the
impedance changes back to Zj,. For example, if we measure the resistance between
the core and the shield of an unterminated cable by an Ohm-meter (a very slow
measuring device) we will see an essentially open circuit (actually, a very precise high

resistance Ohm-meter may show 1/G), whilst a capacitance meter would show C'.

Why do we need to know the characteristic impedance for our experiment?

For the RG-58 type coaxial cable the geometry and the insulation material are
chosen so that Z; = 50 €2. The capacitance per unit length is C'/l = 100 pF/m. Then,
by using (18) the inductance must be L/l = 250 nH/m. Both C' and L are reactive
elements, they can temporarily store energy and return it back. The thermal losses can
be neglected (for cables a couple of meters long and for low voltages). Thus any
energy applied to the cable will be transferred without significant loss to the load at
the end of the cable. However, if the load impedance is different from Z;, some
energy will be reflected back towards the source. Only if the termination resistance
Ry = Z will all the energy be absorbed by Ry and converted to heat.

This is important because we want to see clean individual signal transitions,
undisturbed by reflections, so that the signal recorded is very simple to interpret.

Let us verify the above findings by a simple measurement. We shall verify the
propagation velocity (11) and the time delay (12) using a setup in Fig.4.

Here we need one cable of precise length, chosen so that the oscilloscope we
use will be able to display and clearly discriminate the time delay between the input
and the output pulse. Most oscilloscopes on the market have the fastest time base
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setting of 5 ns/division (or 50 ns across the full screen width). Our calculation shows
the cable delay should be 5ns/m. Thus 1 m of cable should be sufficient to display a
one screen division delay between the pulses. But let us play it safe and take a 2m

long cable for a 10 ns delay; from now on we shall refer to it as the section A.

5 V/div

section A

-5 0 5 10 15 20 25 30 35 40 45
t [ns]

Fig.4: Measurement of the cable time delay. The pulse generator (PG) with an internal
impedance of Rg = 50 (2 is connected by a coaxial cable (of unimportant length) to the V1
oscilloscope input and to the 2 m long section A. Its other end is connected to the V2 input
and a terminating resistor Rt = 50€). Rr dissipates all the incoming energy, preventing
signal reflections. Section A delays the wavefront by 10 ns. The propagation velocity of the
EM signal in the cable must be 0.2 m/ns (~2/3 of the speed of light in vacuum).

We could now use the battery and the switch to generate the input pulse, but it
is more convenient to use a pulse generator, as in Fig.4. With a square wave frequency
set to 1 kHz and the amplitude to 5V, the signal and its repetition rate will be high
enough for finding quickly the proper trigger setup for a suitable display.

The 2 m long section A delays the input pulse by 10 ns, which gives a specific
delay value of 5ns/m. From this, the propagation velocity is 0.2 m/ns, or about 2/3
of the speed of light in vacuum, in accordance with the calculated value (11).

To measure the signal delay we should preferably have a step or a pulse signal
with a clean sharp edge; signal distortion such as wavefront rounding, ringing, or
reflections, would make the interpretation of the measurement needlessly difficult.
Signal distortion is avoided by preserving the network impedance continuity. The
connections between cables and the oscilloscope must be as short as practical. In
professional RF work, special BNC connectors and T-pieces are used for
interconnection continuity. The proper resistive cable termination converts all the
incoming energy into heat, preventing reflections. However, because neither the
waveform generator not the oscilloscope can have infinite bandwidth, the pulse edges
will not be infinitely steep, instead the oscilloscope will display some transition slope



The Heaviside’s Experiment E.Margan

of the order of 1-2 ns. But this is not a problem, since the pulse delay is by definition
measured between the two half amplitude points.

The Experiment

Now that we know the delay as a function of cable length we can arrange the
experimental setup by connecting the required components and cables as in Fig. 5.

Rp
AN V=" o)
oy S0KO _
Vb At=72 o
v ) (t=0)
V2 =9V - o
sectionA V1 i
I i — tr
500
RETYCTeN—. |
| 2m (10 ns) 12.8 m (64 ns) ‘ | 6.4 m (32 ns)
|

Fig.5: The 2m long section A is connected via a switch and a 50k resistor Rg to a 9V
battery, the other switch pole is connected to the two serially connected cables. Their junction
is connected to the oscilloscope input (V4), and the far end is terminated by a 50 €2 resistor.
When we flip the switch, the energy present within the section A rushes out through the newly
available path, reaching the terminating resistor, where it dissipates into heat, so there are no
reflections. What is the amplitude and the duration of the pulse recorded by the oscilloscope?

In addition to the already used 2 m long section A, we shall need two other
cables. Their lengths are not important, they only need to have a delay much longer
than the delay of section A, so that the generated waveform is clearly distinguished by
avoiding any possible mutual interaction. Form a bunch of standard laboratory values
lets us take one cable 12.8 m long, which would delay the signal by 64 ns, and another
6.4 m long for a further 32 ns delay.

Initially one side (V1) of section A is connected by the switch via a 50 k{2
resistor (Rp) to the battery [+] pole, the [—] pole goes to the shield, whilst the other
end of the cable (V2) is left open. The 64 ns cable is connected between the other pole
of the switch and the oscilloscope input V4. The 32 ns cable connects the V4 point to
the termination resistor Rt = 50 €. With the switch in the position shown in Fig.5,
the cable’s capacitance is slowly charged to the voltage of the battery, 9V, within a
time equal to about SRC' (~50 us).

What do we expect to see on the oscilloscope screen after flipping the switch?

By naive reasoning, as the battery voltage is 9V, the pulse amplitude should
also be 9V. We measured the delay of section A to be 10ns; since all the energy
leaves section A to be dissipated by Rt, we expect to see a 10 ns long pulse.

As this pulse travels by the oscilloscope input V4, it is recorded and displayed
on the screen. The oscilloscope input has a very high resistance and low capacitance
(1M€, 12pF), so the pulse edges suffer only minor aberrations. Likewise, the
impedance discontinuity at the switch will not spoil the signal if the connections are
kept short.
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Now we flip the switch. As the switch travels between the two contacts, the
section A is effectively open at both ends; the energy that was accumulated from the
battery is preserved by the cable capacitance (~200 pF) until the new contact is made.
Then the energy rushes out via the newly available path, eventually reaching Rr,
where it dissipates into heat, so there are no reflections to worry about.

What are the pulse amplitude and the duration displayed by the oscilloscope?

Obviously, our expectations were completely wrong! What happens in reality
is displayed on the oscillogram in Fig.6, notably on trace V4.

Rp
i = -
‘J— p, S0k l Switch 20ns o)
Y% ) at r=0
@]
section A @
V2 Rt
500
L
2 m (10 ns) ‘ 12.8 m (64 ns) ‘ 6.4 m (32 ns)
\ |
Vi
V2
>
2
>
wv
V3 ’ \
20 ns
-10 0 10 20 30 40 50 60 70 80 90

t [ns]

Fig.6: By flipping the switch at ¢ = 0 the voltage V1 falls to 1/2 of its original value and
remains such for 20 ns (which is 2x the delay of the section A), then it falls to zero. But if
we look at the voltage at the free end of section A (V2), we see that it remains at its full
amplitude value (9 V) for 10 ns only, and then falls to zero. The generated pulse (V3) is of
double length (20 ns) and of half the amplitude (4.5 V), and such is also the pulse recorded
by the oscilloscope (V4) 64ns later. The oscillogram proves that initially only half the
energy runs out, followed by the other half after one time delay of the first cable section.
Why does this happen?

Surprise, surprise: the amplitude of the recorded pulse (V4) is only one half
of the original voltage value, 4.5V instead of 9 V, but the pulse length has doubled,
20ns instead of 10 ns.

How can we explain this?

NOTE - Switch problems: Switch contacts can bounce! Accounting fror the lever mass and the spring
stiffness, the bouncing time is usually in the ~30 ps to ~3 ms range, so mostly there are no problems in
handling <100 ns pulses. Occasionally though, oscillations may appear. Simply repeat the procedure.

— 10—
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Explaining the Results

By investigating all the available junctions of the network (V1 to V4 in Fig.6)
we have no other option but to conclude that initially only one half of the energy

runs out of section A for 10 ns, and is immediately followed by the other half in the
next 10 ns.

This is where the water pipe analogy breaks down completely!

Just think of it: the battery initially transferred a number of free electrons from
the core to the shield, leaving vacancies in the core; but, after the switch was flipped,
why would half of those electrons decide to stay in place, patiently waiting for the
other half to leave, and then follow them obediently?

This is really odd: if electrons were the cause of EM phenomena, one would
expect all of them to behave in the same manner, otherwise the theory does not make
sense at all!

OK, so we admit that the field between the conductors must have a role
somehow. But exactly how does it behave?

By examining the oscillogram in Fig.6 more closely we note that the voltage at
the free end (V2) of section A remains at the full 9 V value for 10 ns, exactly the time
delay of that cable section, and then falls to zero. Therefore if half of the energy runs
away from node V2, the other half must be running towards it, in order to keep
the voltage unchanged.

But why? Here we ask again the same question as for the electrons: why does
not all the field behave in the same manner?

The conventional explanation is that the initial section of the cable represents a
50 €2 source, driving a 50 €2 load, therefore the voltage falls by half at the closure of
the switch; this voltage change then propagates in both directions, so that the half
propagating towards the free end is reflected there to follow the first half propagating
already towards the load.

Really so? The EM pulse does not know what kind of a load it will encounter
96 ns later at the end of the cable, and it does not care until it reaches the load. The
EM pulse ‘feels’ just the local ;o and € at the point where it momentarily is.

To prove this let us remove the termination resistor at the end and repeat the
experiment. The result is exactly the same, only now we have yet another free end at
which the pulse will reflect back to be recorded by the oscilloscope 32+32 ns (twice
the delay of the last cable section) after the first pulse; we can see it by changing the
oscilloscope time base to 20 ns/division. And it does not stop there: the pulse will
continue to travel, bouncing back and forth at both open ends until the energy is
eventually exhausted by the resistive loses in the circuit.

Alternatively, we could replace Ry by a short and obtain the same initial
result, same double pulse length and same half amplitude, but now the reflection at the
short would be inverted, and a negative, —4.5V, 20ns long pulse will be recorded
32+32 ns after the first one. Further reflections will now have alternating signs.

OK, so the termination does not matter until the pulse reaches it. But then, the
cable itself has the same 50 €2 characteristic impedance; what if the half voltage drop

11—
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at the closure of the switch is a consequence of the impedance divider formed by the
two cable pieces at the switch. Well, is it really so?

No! If it were so, we would have the same situation at the junction of the two
cables at the oscilloscope input, and we do not see any odd behavior there. In fact, at
this point we have an impedance continuity (apart from the negligible influence of the
oscilloscope input itself), thus no reflections there. And at the switch we also create a
path of uniform impedance (if we keep the switch connections short), therefore this
can not be the cause of the initial one half voltage drop.

Now how about this:

Photons cannot stand still. Photons carrying the E field inside section A

travel at speed v = 1/4/ LC', but are being continuously reflected at both open
ends. Before we flipped the switch, at any instant, we had two energy fields, each
10 ns long, traveling in opposite directions. At ¢ = 0 the switch closed and a new
path of equal impedance became available, so the energy half which was traveling
forward continued to travel forward by the new path through the 64 ns cable and
beyond. Likewise, the energy half which was traveling backward continued to
travel backwards because it was already traveling backwards at the moment
of switch closure, so no reason for it to reverse its direction; only upon reaching
the open end (V2) it experienced a reflection, and therefore followed the first half
back to V1 and out through the newly available path. See reference [21].

This may sound strange, but is simple and logical, and there is no need to
invoke any special conditions! But in order to confirm this hypothesis there are a few
relations which need to be explained.

The first important relation is the so called Poynting’s vector (named after
John Henry Pointing, 1852—1914, but Heaviside and Nikolai Umov both discovered
the same relation independently):

S=ExH (19)

Here E and H are the vectors of the electric and magnetic field strength, respectively.
Their vector product, S, has a physical meaning, it is interpreted as the instantaneous
power density flux through a unit area, measured in W/m?.

It is important to understand a peculiar property of the vector product. The
‘right hand rule’ of Fig.7 applies here.

}s-ExmH
E
W
H -

Fig.7: The right hand rule for vector products.

12—
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The result of the vector product points in a direction perpendicular to the plane
in which the original E and H vectors reside, which is why both E and H point in the
transversal direction in respect to the direction of energy propagation. Also, if either E
or H reverses direction, the vector product S also reverses (to view this rotate the hand
about either the H axis or the E axis); however, if both E and H reverse their
directions, the vector product S does not reverse (the product of two negative values is
a positive value; to view this rotate the hand about the S axis).

With this in mind we can show the linear superposition of our two energy
halves traveling in opposite directions at the open end of the cable. Open circuit
reflection occurs about the axis of the electric field, so it retains its direction, and
consequently doubles, whilst the magnetic component is reversed and cancels (open
circuit means zero current, thus also zero magnetic field). The Poynting’s vector S
cancels too, which means no net energy flow, resulting in an apparently ‘static’
condition, as shown in Fig.8:

S=ExH

2E

Fig.8: Vector sum of the outward and inward reflected components at the open end
of the coaxial cable: the electric component E doubles, whilst the magnetic
component H cancels, and so does the Poynting’s vector S. The result is an
apparently static electric field.

In case of a short circuit the opposite happens: because of the short, the
resulting E field must be zero, and the short circuit current ¢ causes the magnetic field
H. The reflection occurs about the magnetic field axis, therefore the electric field
cancels and the magnetic field doubles. Since the Poynting’s vector S is again
canceled, we have an apparently ‘static’ magnetic field, as shown in Fig.9:

Fig.9: Vector sum of the outward and inward reflected components at a shorted end
of a coaxial cable. The magnetic component doubles, caused by a loop current 1,
whilst the electric component cancels, and so is the Poynting’s vector. The result is
an apparently static magnetic field.

13—
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Actually, during the transition of the switch when section A is disconnected
from the circuit, Fig.7 is valid at any cross-section point of the cable, because the
energy flow is continuous.

It is instructive to see what happens when the switch is reconnected to the
battery. The cable capacitance is then refilled with energy. But instead of 50 k(2, let us
use a 3302 resistor for Rg, to have an impedance comparable to the 502 of the
cable, but still mismatched. Fig.9 shows the voltages at both cable ends, V1 and V2.

10

9

8

7
— Rp
> 6 ANA
o s iVb330_Q
— 9V o) (1=0)
> 4 V2 [

3 [ sectionA V!

V2
2
| Vi ‘ 2 m (10 ns)
\
0
0 50 100 150 200 250 300 350 400 450 500

t [ns]

Fig.9: Refilling the cable with energy from the battery through a 330 resistor. The
mismatch of impedance Z;/Rp and the time delay cause a stairstep like voltage build up.
The small aberrations at each transition are the consequence of the oscilloscope input
capacitance (~12 pF) loading of the line.

As the switch reconnects the cable core to the battery, the voltage V1 jumps to

a value determined by the impedance mismatch, the Z;/Rp ratio, namely:
Zy 50
AVljegy =VWp—=——"—-=9 - ———— ~ 1.184V
(=0 = ">z + Ry 50 + 330

V1 remains at 1.184 V as the line is filled up. A 1.184 V wavefront propagates
towards V2, where it arrives 10ns later. V2 being an open end, the wavefront must
reflect back, doubling the V2 voltage, and the cable now being filled backwards by
another 1.184 V on top of the existing 1.184 V, maintaining the 2.368 V level at V2.

After another 10ns the wavefront returns to V1. Because of the impedance
mismatch the new reflection is now smaller by the available voltage difference, or:
Zy 50

———— =(9-2368) ——=—~ 0873V

AV1(—ggns) = (Vo — 2V (1)) - 50 + 330

This step is of course superimposed on the existing 2.368, so the line is being
filled up to about 3.241 V.
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The process now repeats and after each reflection the line voltage increases by
a lower voltage difference multiplied by the impedance mismatch factor, reaching
very close to the battery voltage 1}, after some 500ns. And it does not end there, it
continues to infinity, but the observation of the steps is eventually limited by thermal
noise of the circuit.

To see more clearly the fields, let us examine Fig.10, which shows the
situation some 3 ns after the first reflection, or 13 ns after the closure of the switch.

zs—olZE
SH=0 E Rp
L L =, Sl 4
- | ] 1.184V <— S 9V
X

‘ 2 m (10 ns) ‘

Fig.10: Superposition of fields ~13 ns after the closure of the switch. The battery is filling
the line, the first step size being determined by the battery voltage V4, and the impedance
ratio. After 10ns the field reaches the open end at V2 and reflects back, doubling the
voltage. Another 3 ns later the field has filled about 1/3 of the line from the back to twice
the original step voltage. At a distance x; from V1 there is still a net energy flow forwards,
as indicated by the presence of S = E x H, but at x5 the field is apparently ‘static’, having
2E, but S = 0 and H = 0. Yet, the 1.184V wavefront is traveling back superimposed on the
existing 1.184V. Of course, the battery is supplying the energy for filling the line
backwards, but that energy must first travel towards V2 and be reflected at the open end.

The situation in Fig.10 is interesting because here we have at the same time a
net energy flow at x; which means that the battery is filling the line with energy, and
yet at the open end we have an apparently ‘static’ condition, with twice the voltage
and zero current!

As the line is filled, the battery supplies the current (less after each reflection
at V1), until several ps later the current has dropped practically to zero, and the
voltage is practically equal to the battery voltage. But the important question to ask is
this:

Did the battery stop supplying energy to the circuit?

The correct answer is: no! Photons cannot stand still! The battery continues to
supply the energy to the system, but the system now reflects all the energy back to the
battery. The effective current is zero, so no power is dissipated, but the energy
continues to flow back and forth throughout the system.

Another point to make is the following: if we put back the 50 k{2 resistor as
Ry and charge again the cable, we will not see any stairsteps. This is because the
impedance mismatch is very high, 50 €2 to 50 k2, so the steps are less than 9 mV, too
small to see (at the input sensitivity of 2V /division). Because of the much smaller
steps a much larger number of reflections is needed to charge up the line, leading to
the classical capacitor charging equation V' (t) = V;,(1 — e~*/%8C) 1t is important to
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realize that this classical equation is only a mathematical approximation (for the case
when Z, — 0)! The actual charging always occurs in smaller or larger steps.

Discussion

What have we learned?

The experiment and the analysis of its unexpected result force us to
acknowledge that there can be no such thing as ‘static’ electric or magnetic field.
Photons (the field carriers of EM energy) cannot stand still, they can only travel at the
speed determined by the local i and e, which in vacuum limits to the speed of light:

1 1
< p—=__——
VHE ‘ \/ oo

So every apparently ‘static’ field must be formed by at least two EM energy
fields traveling in opposite directions. Depending on the type of impedance reflection
at a boundary (4, > Zs or Z; < Zs), either the E field or the H field cancel,
producing the ‘magnetostatic’ or the ‘electrostatic’ field.

v =

(20)

The ‘static’ energy is kept trapped partially by the circuit shape, and partially
by a sharp impedance discontinuity, forcing the outgoing field to be reflected back,
thus preventing it from escaping. The impedance discontinuity in the case of an open
circuit is determined by the vacuum impedance:

Zo= /2L ~3770 Q1)
€0

This is a real Ohmic value, and yet no power is dissipated by it. Every radio
amateur who ever had to deal with the impedance of his antenna can tell you about it.
The antenna impedance has to be adjusted in order to provide a suitable transition
from the RF amplifier output and the antenna cable to free space to avoid standing
wave reflections (SWR) within the frequency range of interest, otherwise there is a
risk that the energy from the transmitter is reflected back and after twice the delay of
the antenna cable enter the transmitter output stage out of phase with the generated RF
wave, causing excessive power dissipation and eventually a destruction of the output
transistors.

So far we were interested only in the numerical values of vacuum permeability
and permittivity. But what are they in the physical sense? An insight may be acquired
by looking at their units of measure, and the way they are defined.

Let us start with the vacuum permittivity, €. In (9) it is expressed in units of
[As/Vm]. Now [As] is the Coulomb [C], which is a measure of charge, but [As/V] is
the Farad [F], which is the measure of capacitance. Then, [F/m] means simply the
capacitance per unit length. A capacitance is defined in two ways, in terms of
geometry (as the effective area of the plates and their distance), but also in terms of a
variable current and voltage:

i

" dojdt

[F] (22)
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which is fundamentally related to a change of energy.

A similar discourse is valid for vacuum permeability, u. In (7) we expressed
it in units of [Vs/Am]. Now [Vs/A] is the Henry, [H], a measure of inductance, and
[H/m] means inductance per unit length. Like the capacitance, the inductance may be
represented by the geometry of a coil with a certain number of turns, but also (more
importantly) as:

(%

I =
di/dt

[H] (23)

which also relates to a change of energy. Consequently, [F/m] and [H/m] denote the
ability of vacuum to store energy per unit length.

Alternatively, we may look at the permeability and the permittivity of vacuum
as the amount by which vacuum opposes any change in the magnetic and electric
energy content, which fundamentally provides the reason for the constancy of the

speed of light, c = 1/ /eopo -

The same is valid in coaxial cables: as long as the thermal (Ohmic) losses are
low and the applied voltage and current are low, the materials (conductors and
insulators) will behave linearly, so their € and x can be considered constant. Then, any
energy applied to one side of the cable will be transferred essentially without loss to
the load at the other end with a propagation velocity v =1/, /epu.

A Broader Perspective

Quantum mechanics, quantum electrodynamics, and quantum field theory all
predict that vacuum is not ‘empty space’, but is full of energy, and the quantum
fluctuations of this energy result in constant particle-antiparticle pairs being created
and almost immediately annihilated, returning the energy to the vacuum EM fields;
during their short lifetime those pairs behave like an electric dipole, they react to any
external field by adjusting their polarization, thus giving the vacuum its EM
properties.

We have learned that EM energy cannot be static. This means that the
instantaneous Coulomb action at a distance is a myth, and there are no longitudinal
electric waves in the way envisaged by Tesla.

But there are many other interesting aspects of the problem. For example, the
problem of the skin effect at high frequencies or sharp pulse edges, the field
penetration depth depending on the type of conductive material and the field
frequency. But for a step wave the penetration depth increases exponentially after the
leading edge of the wave outside the conductor. This means that electrons inside the
conductor react to the applied field after a finite time.

A similar problem is superconductivity, where the superconductor expels the
field out. At low temperatures the phonon deformations of the material crystal lattice
fall below a certain energy threshold; the free electrons can now sense each other’s
spin over a considerable distance, and those having opposite spin can couple, forming
so called Cooper’s pairs. Such pairs behave like bosons, since the pair spin is zero;
such electron pairs reject any incoming EM energy below a certain high threshold,
consequently the field can propagate by the supeconductor’s surface without losses.
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Finally there is the problem of the electron itself and its own ‘static’ field.

A pair of photons with energy beyond a certain threshold can interact, giving
birth to a pair of complementary charged particles. The lowest possible energy of
interaction is when the photons have at least 2x511 keV; their encounter creates an
electron—positron pair:

v+ 2 e +et (24)

The bi-directional arrow indicates that the reaction is reversible, the electron—positron
pair annihilates into a pair of photons. This is but one example of vacuum quantum
fluctuations.

In the case that there is an excess energy, the created pair acquires a kinetic
momentum, and can be separated before annihilation, so the particles remain stable.
The energy trapped in the newly formed particles constantly tries to escape, emitting
‘virtual photons’ (virtual in the sense that there is nothing near enough to catch them),
but they are being constantly reflected back by the impedance discontinuity between
the ‘inside’ of the particle and the surrounding vacuum; since the energy cannot
escape, the particles remain stable. But if they happen to encounter each other again,
the impedance of the space between them is lowered, allowing their internal energy to
escape, and we get a pair of photons again.

This effect is used in the Positron Emission Tomography (PET) scanner,
where a radioactive marking chemical, bonded to a sugar molecule or other nutrient, is
introduced into a patient’s blood stream and there decays emitting a positron, which
annihilates with the first electron encountered, allowing us to detect the coincidence
of two photons hitting the detectors close to the body. By reconstructing the path of
the photons we can identify the precise position of annihilation, and thus monitor the
biological processes of interest by following the concentration of the radioactive
marker in organs.

Such an understanding of elementary particles leads naturally to the question
of an internal electron ‘structure’. Based on (24) it is reasonable to assume that there
must exist a particular geometrical configuration of the internal energy field, which
could explain the observed particle charge, its spin, its anomalous magnetic
momentum, and possibly also its inertial and relativistic mass in terms of a distortion
of the internal field under external forcing. There are many interesting models in
literature, ranging from rings to knots, structures more or less similar to what has been
proposed by String Theory (all five versions of them). Unfortunately, there are as yet
no experimental data which would allow us to prefer one model over any other, so this
remains in the area of (educated) speculation.

18—



The Heaviside’s Experiment E.Margan

Appendix 1: Field Wave Equations

We start from the Laplace equation for a potential function within a cylindrical
coordinate system. The symmetry is circular and both boundaries are equipotential, so
the distribution of the potential is independent of the angle 6. The potential ¢ depends
only on the distance 7 from the center of symmetry, ranging from a to b. So we have:

9 ( 0¢(r)\ _
E(T o >_o (Al.1)

A general solution for such a differential equation is:

¢(r)=Alnr+ B (A1.2)

where the constants A and B must conform to the boundary conditions. Let us assume
that the shield is the zero reference potential, and the core is at a potential U :

¢(a) =U
(A1.3)
¢(b) =0
The particular solution is then:
6(r) = 1 In(b/) (AL4)
r) = .
In(b/a)
The electrical field strength in the transversal direction equals the potential gradient:
U 1
E(r)=— = -—1, AlS
() = =Vo(r) = 17 (ALS)
where 1, is the unit vector in the r direction, and the operator ‘nabla’ is:
0 0 0
V = 1, — 1, — 1,— Al.6
Ox +ly Jy + 0z ( )

for which the domain of r is the (z,y) plane, and the wave propagates in the z
direction. From this we can write the propagation in the z direction of the wave
function:

U 1

C—e i, (A1.7)

E(r,z) = In(b/a) r

where the phase number 3, = w,/ue is the same as for the propagation of the planar
wave in homogeneous medium or in the free space. The magnetic component is:

1. x E(r,
H(r,z) = 1. x E(r, 2) (A1.8)
Z
where Z = / /e is the impedance of the medium. Thus:
U 1 .
H = . e Al.9
2= Zhea) ¢ (A19)

where the unity vector is in the direction of the angle , around the core conductor.

— 19—



The Heaviside’s Experiment E.Margan

Fig.A1.1 shows the field in the cable cross-section under the propagation conditions,
and under the superposition with a reflected wave.

Fig.A1.1: Left: Field cross-section under the propagation condition, with the radial
electric field and circular magnetic field. Right: under the superposition with the

reflected wave the magnetic field cancels and the density of the electric field doubles.

In the case of a lossless line the wave equation is the general Laplace wave
equation, relating the space and time derivatives of the second order:

0% u(z,t) 0% u(zx,t)
—— L =LC——1= Al.10
Ox? ot? ( )
The product LC' has a dimension of the inverse velocity squared:
1
LC = =l (A1.11)
The general solutions are the D’4lambert functions; for the voltage:
u(z,t) :u+(t— E) +u” (t+ i) (A1.12)
v v
and for the current:
i(x,t) = it (t - f) i (t+ f) (A1.13)
v v

The positive and the negative superscripts denote the direction of propagation of the
wave: the positive superscript is associated with a forward propagation (away from the
source), and the negative superscript is associated with a backward propagation (a
reflected wave).

The current is not independent of voltage:

i(a,t) = —K/%dmzl(v[u*(t— 2 —u*(t+%)} (Al.14)

(%

The product of the constant KX and the wave propagation velocity v has a dimension
of conductance, so we may define the characteristic resistance of the line:

Ry=— =/ = (A1.15)
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It is of interest to review the Maxwell equations for a superposition of the
forward ad reflected wave. For the open end reflection we have no magnetic field:

0B

E= — — ~
V x e 0
oD
H=J+—
V x J+ a1
V-D=p
V-B=0 (Al1.16)

This is called the ‘electro-quasistatic’ solution. Similarly, for a reflection at the
shorted end we have a ‘magneto-quasistatic’ solution:

0B
V xE = 5
VXH:J—Fa—DEJ
ot
V-D=p
V-B=0 (A1.17)

However, the fact that in both ‘static’ solutions we do not have any time derivative,
that does not mean that the appropriate fields are not functions of time: any change at
the source must still propagate to the point x, and then to the end of line and back to «
in order to reestablish the new quasistatic condition.

We can verify this by inspecting the Poynting vector. For the open end
reflection the power transfer will be:

_ExHY+HT) 1

2 2Z(

By considering the vector product identity: A x (B x C) = (A-C)B — (A-B)C we
can write:

S Ex1,xE"—Ex1, xE) (A1.18)

S = 57 [(Ege_ﬂ“ +Eg ) - EfT — (Efe T+ EgeT) cEf e_Jﬁ'r} 1,
1 2 2 * 7 * y
= “Eg‘ - ‘Eg‘ +Ej - E]"e¥T _Ef By e_m“] 1. (A1.19)

The sum of the last two term in the brackets is imaginary, and does not contribute to
the real (work) power density P, so we can write:

1 2 2
P=R{S} = “Eg‘ - ‘Eg‘ }12 =P+ P (A1.20)

This means that the power of the two propagation directions are effectively
independent and the result is simply a linear superposition (sum) of the two.
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Appendix 2: Characteristic impedance

. R gx %dx
L
S —AM— T
Z—0> Vi _-— TCdx %fgdx TUO LI]ZO
dx

Fig.A2.1: Characteristic impedance calculation.

Fig.A2.1 represents a very short cable segment of a length dx. An infinitely
long line is modeled by an infinite number of such segments connected serially. The
component values, which are ordinarily given per unit length, say R/l [€2/m], etc., are
now reduced to (R/l)dz. The input impedance Zj, of the finite line element dx
isolated from the rest of the line is equal to the ratio of the input voltage v; to the input
current ¢; (after the input wave is reflected at the open end of the line element):

v R sL 1

(A2.1)

With an infinite line composed of infinitely many equal line elements
connected, the wave is never reflected back, and the effective input impedance of the
line is that of the characteristic impedance Z;. The first segment is thus loaded by the
characteristic impedance. In such conditions the line can be replaced by a lumped
impedance of the same value as the characteristic impedance Z;, on which the wave
dissipates completely (converted into heat), so that no energy is reflected. This means
that Zy must have a completely real Ohmic value: Zy = R,.

However, Zj, is complex, because s = jw. If the angular frequency w is high
enough, R < jwL; also, 1/G > 1/jwC'. This means that for transient phenomena
across a cable section a couple of meters in length we can neglect R and G.
Nevertheless, we are going to derive the characteristic impedance for the general case.
In order to simplify the equations, let us rename the series impedance of the dz
section as Z;:

R+ sL

dxZs = dx ; (A2.2)
and the parallel (shunting) admittance as Y};:
dzY, = da:@ (A2.3)
The input impedance of the dx section loaded by the rest of the line is:
Zn = Zy =dxZs + ! 1 (A2.4)
dzy, + Zo
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From this we can express the characteristic impedance of the dx section:
1 1
Zo| dzYy + — | =daZ| daYy, + — ) +1 (A2.5)
Z() ZO

By multiplying the terms in the parentheses we have:

1
ZodxYy + 1 = dz* ZY, + dvZ,—— +1 (A2.6)
0

The term ( + 1) on both sides cancels:

1
ZydxYy = dr*ZY, + deS7 (A2.7)
0

and by multiplying all by Z, we obtain:
ZgdaY, = Zodx® ZY, + dx Zs (A2.8)

If we now let dz—0, the term with the second order derivative dx? will approach zero
more rapidly than the first order terms, so it can be neglected:

Z¢dxY, = dvZ; (A2.9)
From this we arrive at the value of Zj:
R+ sL
ZQ_da:ZS:é:T_R—FsL (A2.10)

O dzy, Y, G+sC  G+sC
l

R+ sL
Zy =) —= A2.11
0 G + sC ( )

As already explained, for very high frequencies and relatively short cable
lengths we can neglect the thermal losses of both dissipative terms, R—0 and G—-0, so
we finally obtain the characteristic impedance of a lossless transmission line:

or:

L
70 =4/ — A2.12
0 c ( )

By expressing C' and L by their appropriate geometrical functions of (13) and (15), we

can write:
) JE (a213)
a €

i3
Z: _— =
"=\V©e

In free space there are no geometrical boundaries, so the factor In(b/a) does not
apply, p: = 1 and £, = 1, and the characteristic impedance of free space is:
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Zo= 2 ~3770 (A2.14)
€0

Therefore in homogeneous, isotropic, and linear (HIL) media the impedance is

independent of frequency, the wave propagation is non-dispersive, and the waveform
shape is preserved.
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Appendix 3: Vacuum Polarization

In classical electrodynamics, a weak electric field influencing a dielectric
medium slightly displaces the electrons from their ordinary distribution in respect with
their atomic nuclei, thus creating small dipoles within the material. The classical
formalism treats such effects in terms of a polarization vector P, which is proportional
to the electric field E:

P = xeoE (A3.1)

Usually we define the dielectric displacement as:
D =¢)E + P =¢ce0E (A3.2)

so that the relative permittivity is understood as a function of the susceptibility of the
optical medium in question:

e=1+y (A3.3)

Assume that an external field interacts with a virtual electron-positron pair.
The dipole momentum:

P = QT (A3.4)

is induced on that pair, with g, as the elementary charge, and = as the displacement.
We can compute its magnitude by assuming that a virtual pair behaves like a
harmonic oscillator in the quasistatic limit:

mew%a: = q.F (A3.5)

with m, as the electron mass, and w; as the natural resonant frequency. When the
externally applied field is small, F < E, (E; is the Schwinger limit, 1.3x10'8 V/m),
it is possible to find the resonant frequency from the energy associated with the
quantum transition. If the virtual pair represents the ground energy state of the ete™
pair, and the real positronium [17] ‘atom’ represents the excited state, we can assume
the existence of an energy gap F, such that a particular oscillation frequency can be
associated with it:

wy = =& (A3.6)

This energy gap should be equal to the rest mass of the positronium:

fiwy = 2mec? (A3.7)
Thus by combining (A3.4) and (A3.5) we find the induced dipole momentum:
e
p=—=k (A3.8)
MeWwj

Of course, the magnitude of polarization must depend on the effective volume
per each dipole. Both theoretical and experimental analyses have shown that the
Compton’s wavelength [18] is an appropriate size for a virtual e™e™ pair:
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o= (A3.9)

MeC

This brings us to the value of the vacuum polarization:

2
e
Ph=——=F A3.10
0 mew% >\?é ( )
Because of the similarity with (A3.1), we can assign to the quantity multiplying E the
role of an effective permittivity:

e
Tg= —= A3.11
0 MeWZ A, ( )
Note that this would be the value of the vacuum permittivity if the particle
pairs created by the vacuum energy quantum fluctuations were only electrons and
positrons. However, it is equally possible that the vacuum energy density is much
higher, thus permitting fluctuations high enough for the creation of a whole spectrum
of more massive particle pairs, the average being probably close to pion pairs, 77 .
Indeed, the actuall permittivity value is more than an order of magnitude higher than
what (A3.11) suggests, indicating that such a scenario is very probable.

More on the subject of vacuum energy and its quantum fluctuations can be
found at [22] and beyond.
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Further Reading

Visiting Wikipedia is like visiting a dentist: one does it only when necessary.
Nevertheless, I recommend some pages here for a quick flyby, as well as to ease the
search for related subjects; also, it is often possible to find historically important
original articles on the problem of interest at the end of a page, and there are some
nice GIF animations, too.

[1] <http://en.wikipedia.org/wiki/Coaxial cable>

[2] <http://en.wikipedia.org/wiki/Transmission line>

[3] <http://en.wikipedia.org/wiki/Heaviside condition>

[4] <http://en.wikipedia.org/wiki/Permittivity>

[5] <http://en.wikipedia.org/wiki/Magnetic_permeability>
[6] <http://en.wikipedia.org/wiki/Wave impedance>

[7] <http://en.wikipedia.org/wiki/Characteristic_impedance>
[8] <http://en.wikipedia.org/wiki/Wave equation>

[9] <http://en.wikipedia.org/wiki/Superposition_principle>
[10] <http://en.wikipedia.org/wiki/Quantum_superposition>
[11]<http://en.wikipedia.org/wiki/Telegrapher%27s_equations>
[12] <http://en.wikipedia.org/wiki/Vector product>

[13] <http://en.wikipedia.org/wiki/Longitudinal wave>

[14] <http://en.wikipedia.org/wiki/Electromagnetic wave>
[15] <http://en.wikipedia.org/wiki/Heaviside step function>
[16] <http://en.wikipedia.org/wiki/Virtual particles>

[17] <http://en.wikipedia.org/wiki/Positronium>

[18] <http://en.wikipedia.org/wiki/Compton_wavelength>

More on transmission line theory:

[19] <http://alignment.hep.brandeis.edu/Lab/XLine/XLine.html>
[20] <http://www.allaboutcircuits.com/vol 2/chpt 14/3.html>

A numerical simulation movie showing the experiment field dynamics:

[21] <http://www-19.ijs.si/~margan/Articles/TLMovie.mpg>

On the properties of vacuum as an electromagnetic medium:

[22] <http://www-19.ijs.si/~margan/Articles/SomeConsequences.pdf>
[23] <http://www-19.ijs.si/~margan/Articles/vacuum_energy density.pdf>
[24] <http://en.wikipedia.org/wiki/Vacuum_energy>

[25] <http://en.wikipedia.org/wiki/Vacuum_state>

[26] <http://en.wikipedia.org/wiki/Zero-point_energy>
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