Oliver Heaviside, "Electrical Papers" vo. 1, 1902, p434 or Jan. 10, 1885; "By the way, is there such a thing as electric current?

It so happened that, like Heaviside,
Catt's first acquaintance with electricity
was also with the dynamic phenomena,
researching high speed (1 nsec) logic
in Motorola Phoenix in 1964.
http://www.ivorcatt.co.uk/x147.pdf
Previously, during his Cambridge degree
course in *engineering*, there was very
little mention of electricity.

SECTION II. ON THE TRANSMISSION OF ENERGY THROUGH WIRES BY THE ELECTRIC CURRENT.

Consider the electric current, how it flows. From London to Manchester, Edinburgh, Glasgow, and hundreds of other places, day and night, are sent with great velocity, in rapid succession, backwards and forwards, electric currents, to effect mechanical motions at a distance, and thus serve the material interests of man.

By the way, is there such a thing as an electric current? Not that it is intended to cast any doubt upon the existence of a phenomenon so called; but is it a current—that is, something moving through a wire? Now, although nothing but very careful inculcation at a tender age, continued unremittingly up to maturity, of the doctrine of the materiality of electricity, and its motion from place to place, would have made me believe it, still, there is so much in electric phenomena to support the idea of electricity being a distinct entity, and the force of habit is so great, that it is not easy to get rid of the idea when once it

ELECTROMAGNETIC INDUCTION AND ITS PROPAGATION. 435

has been formed. In the historical development of the science, static phenomena came first. In them the apparent individuality of electricity, in the form of charges upon conductors, is most distinctly indicated. The fluids may be childish notions, appropriate to the infancy of science; but still electric charges are easily imaginable to be quantities of a something, though not matter, which can be carried about from place to place. In the most natural manner possible, when dynamic electricity came under investigation, the static ideas were transferred to the electric current, which became the actual motion of electricity through a wire. This has reached its fullest development in the hands of the German philosophers, from Weber to Clausius, resulting in ingenious explanations of electric phenomena based upon forces acting at a distance between moving or fixed individual elements of electricity. It so happened that my first acquaintance with electricity was with the dynamic phenomena, and after I had read with absorbed interest that instructive book, Tyndall's "Heat as a Mode of Motion." This may explain why, when it came later to book-learning regarding electricity, I had the greatest possible repugnance to all the explanations, and could not accept the electric current to be the motion of electricity (static) through a wire, but thought it something quite different. I